On finding optimal quantum query
algorithms using numerical optimization

Abstract

We propose a method that can be used to construct a
quantum query algorithm for the given Boolean function. This
method is based on numerical optimization. We apply it to all 3
and 4 argument Boolean functions. We also show how one
quantum query algorithm can be modified to compute other
Boolean functions.

1. Quantum query algorithms

A query algorithm computes Boolean function by querying
its arguments. The complexity of query algorithm is the number of
queries made. A gquantum query algorithm can query all
arguments in a superposition. We consider oracle matrices of the
following type:

D* 0 - 0
0 0 - (=D"

Quantum query algorithm is a sequence of unitary transformations:
Q=U,-0-U,,-....U-0-U, 1)

and the final amplitude distribution is Q |0).

2. General nxn unitary matrix

One can use the so called Givens rotations to transform any
unitary matrix U to a diagonal form

n-1 n
D=U 1:1[,l:iIlG”)

where D is diagonal unitary matrix, i.e. dgq = du exp(ign). Givens
rotation Gj is an nxn identity matrix modified at positions (i,i),
@i,j), (.i) and (j,j). General Givens rotation is determined by a
general 2x2 unitary matrix:

gli glj B ei(r5+o'+r) cos 6 ei(rho'fr) sin @
95 9 - *ging e cosh

If we multiply (2) from the right had side by the adjoints of G, we
obtain a formula for a general nxn unitary matrix U.

3. General quantum query algorithm

If we independently replace each of the Uy, ..., Un in (1) with
a general unitary matrix, we obtain a general quantum query
algorithm. We can obtain any specific quantum query algorithm
Q(X1, Xa, ..., Xn, M) by substituting each of the Uy, ..., Uy with an
appropriate unitary matrix. Q(Xi, Xz, ..., X», M) is a unitary matrix
that depends on the input and on the number of queries made.
The corresponding final amplitude distribution is

(X1, X2, ..., Xn, M)) = Q(Xi1, X, ..., Xn, M) [0)

The result of computation is obtained by measuring
[W(X1, X2, ..., Xa, M)) in some basis B. In order to obtain only 0 or 1 as
the output, we divide the basis vectors of B into two parts - By
and B;. Without the loss of generality we can assume that the
measurement is performed in the standard basis and B, consists
of the first b vectors of the standard basis.

Definition Query algorithm computes a Boolean function f if it
returns the correct answer with probability > 1/2 for each input.

By varying parameters b (1<b<n-1)and m (I <m<n-1) we
obtain different query algorithm templates. For each template we
perform a numerical optimization to find the best algorithm of
this form. To obtain the best algorithm we maximize the worst
case success probability.

4. NPN-equivalence

Definition The following logic gates are called trivial gates:
e NOT - negation,
¢ ID - identity transformation,
o NOT; - inversion of i-th argument,
o SWAP;; - swapping of i-th and j-th arguments.

O—o—@ NOT
| o

SWAP;

i—o—{| NOT,

University of Latvia,
29 Rainis Boulevard,
Riga LV-1459, Latvia

Maris Ozols,
Laura Mancéinska

Definition Two Boolean functions f and g are NPN-equal if a
circuit for f can be made out of trivial gates and a circuit for g.

Example Boolean functions f{x;, x;) = x3 v x; and g(x, x2) = x2 A x;
are NPN-equal:

— NOT
SWAP,, NOT, NOT,

The number of NPN-equivalence classes of Boolean functions of
exactly n variables F(n) (Sloane’s A001528) is significantly less
than the number of all Boolean functions:

n 0 1 2 3 4 5
F(n) 1 1 2 10 208 615 904
22 2 4 16 256 65536 4294967296

Theorem All NPN-equal Boolean functions have the same
quantum query complexity.

5. Results

We computed all NPN-equivalence classes of three and
four argument Boolean functions. We took a representative from
each class and applied the method described in Section 3 to it. For
three argument functions we found one NPN-equivalence class
with quantum query complexity less than the deterministic one:

f=xiox X,
Among four argument functions we found seven such classes:
fi=%X ® X ® X; @ Xy,

HL=UXADAXAX) V(X AXa A DX AXY) V (IX]AX2 AX3 A X)) V
XA A AX) V(XA D AXSA X)) V(XA X A X5 A IXg),

f3 =X| < X < X3 < Xy,

fa=(Xi © X < X3) v (X A X3 AXe) V(X1 A X3 A IXg),

5= S X% X X))V (IX A X A X3 A X)) V(X1 A Xa A X A IXg),
fe=(X S XS X)) V(X S XS Xy) V(X & X3 S Xa),

f7=(X < X) vV (Xi AXs AXe) V (X A X5 A IXg).

