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Abstract 
We propose a method that can be used to construct a 

quantum query algorithm for the given Boolean function. This 
method is based on numerical optimization. We apply it to all 3 
and 4 argument Boolean functions. We also show how one 
quantum query algorithm can be modified to compute other 
Boolean functions. 

1. Quantum query algorithms 
A query algorithm computes Boolean function by querying 

its arguments. The complexity of query algorithm is the number of 
queries made. A quantum query algorithm can query all 
arguments in a superposition. We consider oracle matrices of the 
following type: 
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Quantum query algorithm is a sequence of unitary transformations: 
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and the final amplitude distribution is Q |0〉. 

2. General n×n unitary matrix 
One can use the so called Givens rotations to transform any 

unitary matrix U to a diagonal form 
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where D is diagonal unitary matrix, i.e. dkl = δkl exp(iϕk). Givens 
rotation Gij is an n×n identity matrix modified at positions (i,i), 
(i,j), (j,i) and (j,j). General Givens rotation is determined by a 
general 2×2 unitary matrix: 
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If we multiply (2) from the right had side by the adjoints of Gij, we 
obtain a formula for a general n×n unitary matrix U. 

3. General quantum query algorithm 
If we independently replace each of the U0, ..., Um in (1) with 

a general unitary matrix, we obtain a general quantum query 
algorithm. We can obtain any specific quantum query algorithm 
Q(x1, x2, ..., xn, m) by substituting each of the U0, ..., Um with an 
appropriate unitary matrix. Q(x1, x2, ..., xn, m) is a unitary matrix 
that depends on the input and on the number of queries made. 
The corresponding final amplitude distribution is 

|ψ(x1, x2, ..., xn, m)〉 = Q(x1, x2, ..., xn, m) |0〉 

The result of computation is obtained by measuring 
|ψ(x1, x2, ..., xn, m)〉 in some basis B. In order to obtain only 0 or 1 as 
the output, we divide the basis vectors of B into two parts – B0 
and B1. Without the loss of generality we can assume that the 
measurement is performed in the standard basis and B0 consists 
of the first b vectors of the standard basis. 

Definition Query algorithm computes a Boolean function f if it 
returns the correct answer with probability > 1/2 for each input. 

By varying parameters b (1 ≤ b ≤ n-1) and m (1 ≤ m ≤ n-1) we 
obtain different query algorithm templates. For each template we 
perform a numerical optimization to find the best algorithm of 
this form. To obtain the best algorithm we maximize the worst 
case success probability. 

4. NPN-equivalence 
Definition The following logic gates are called trivial gates: 

• NOT - negation, 
• ID - identity transformation, 
• NOTi - inversion of i-th argument, 
• SWAPij - swapping of i-th and j-th arguments. 

 

Definition Two Boolean functions f and g are NPN-equal if a 
circuit for f can be made out of trivial gates and a circuit for g. 

Example Boolean functions f(x1, x2) = x1 ∨ x2 and g(x1, x2) = x2 ∧ x1 
are NPN-equal: 
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The number of NPN-equivalence classes of Boolean functions of 
exactly n variables F(n) (Sloane’s A001528) is significantly less 
than the number of all Boolean functions: 

n 0      
       

1 2 3 4 5
F(n)

n

1 1 2 10 208 615 904
22  2 4 16 256 65 536 4 294 967 296 

 
Theorem All NPN-equal Boolean functions have the same 
quantum query complexity. 

5. Results 
We computed all NPN-equivalence classes of three and 

four argument Boolean functions. We took a representative from 
each class and applied the method described in Section 3 to it. For 
three argument functions we found one NPN-equivalence class 
with quantum query complexity less than the deterministic one: 

(1)

f = x1 ⇔ x2 ⇔ x3, 
Among four argument functions we found seven such classes: 
f1 = x1 ⊕ x2 ⊕ x3 ⊕ x4, 

(2) f2 = (!x1 ∧ !x2 ∧ x3 ∧ x4) ∨ (!x1 ∧ x2 ∧ !x3 ∧ x4) ∨ (!x1 ∧ x2 ∧ x3 ∧ !x4) ∨  
       (x1 ∧ !x2 ∧ !x3 ∧ x4) ∨ (x1 ∧ !x2 ∧ x3 ∧ !x4) ∨ (x1 ∧ x2 ∧ !x3 ∧ !x4), 
f3 = x1 ⇔ x2 ⇔ x3 ⇔ x4, 

...
...

...
...

...

...
...

...
i

...

...
...

...
i

...
...

...
...

...
...

i

j

...
...

...
...

...
...

i

j

NOT f4 = (x1 ⇔ x2 ⇔ x3) ∨ (!x1 ∧ x3 ∧ x4) ∨ (x1 ∧ !x3 ∧ !x4), 
ID f5 = (x1 ⇔ x2 ⇔ x3 ⇔ x4) ∨ (!x1 ∧ !x2 ∧ x3 ∧ x4) ∨ (x1 ∧ x2 ∧ !x3 ∧ !x4), 

SWAPij f6 = (x1 ⇔ x2 ⇔ x3) ∨ (x1 ⇔ x2 ⇔ x4) ∨ (x1 ⇔ x3 ⇔ x4), 
f7 = (x1 ⇔ x2) ∨ (x1 ∧ x3 ∧ x4) ∨ (x2 ∧ !x3 ∧ !x4). NOTi

 
 


